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The replacement of the pyrazole rings (pz) in the popular
poly(pyrazolyl)borate ligands,1 [HnB(pz)4-n]-, by e.g. 1,2,4-
triazole or tetrazole leads to novel poly(triazolyl)- and -(tetra-
zolyl)borates whichcanbridge between metal centers, thereby
creating coordination polymers with interesting solid-state
structures and properties, whereas the versatile poly(pyrazolyl)-
borate ligands form exclusively molecular chelate complexes.2

We report here the synthesis, structure, and optical properties
of [hydrotris(1,2,4-triazolyl)borato]silver(I) (1), which was
obtained from the potassium salt of the ligand and AgNO3 in
water, followed by recrystallization from aqueous ammonia (eq
1).3 Compound1 presents itself as a two-dimensional coordina-
tion polymer according to the single-crystal X-ray analysis.5

The metal-ligand coordination in1 is detailed in Figure 1;
Figure 2 illustrates the packing and the crystal morphology. In
an unprecedented coordination mode2 the hydrotris(triazolyl)-
borate ligand bis-chelates one silver center with two endodentate
nitrogens and also bridges to two other silver atoms through
two of the three exodentate nitrogen donors. Hence, in one
triazolyl ring both nitrogens become utilized as donor atoms.

The coordination sphere of silver is a strongly distorted
tetrahedron. To the best of our knowledge, no [tris(pyrazolyl)-
borato]silver complex has been structurally characterized.1,7

Compound1 crystallizes in the acentric orthorhombic space
groupPna21 which belongs to the crystal classmm2, where
optical activity can occur as specific physical effects.9 The
tetrahedrally-coordinated silver and boron atoms have four
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Figure 1. PLATON-TME plot8 of the metal-ligand coordination in
a fraction of the polymeric material of1 (50% probability ellipsoids).
Selected distances (Å) and angles (deg): Ag-N3a 2.264(3), Ag-N5
2.455(4), Ag-N8 2.379(6), Ag-N9b 2.310(6), N3a-Ag-N9b
111.0(2), N3a-Ag-N8 105.0(2), N9b-Ag-N8 136.7(1), N3a-Ag-
N5 134.5(1), N9b-Ag-N5 88.3(2), N8-Ag-N5 83.0(2).

Figure 2. Packing diagram for the layer-type crystal structure of1
(PLUTON8) and crystal morphology with relative positions of crystal
axes from precession camera photographs. There are no short interlayer
contacts.
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different ligands, each, and are asymmetric centers. In the
nonenantiomorphous classmm2 there exists, however, an equal
number ofR andSconfigured centers in the same crystal, and
both optical axes in a single crystal of this optically biaxial
orthorhombic system show rotation of the plane of polarization,
however, with opposite sign.10 Because of the dominant effect
of double refraction, optical acitivity can only be measured along
the optical axis in many crystal systems.9,10 Determining the
position of the optical axes requires in turn a rather detailed
optical study. Therefore, verification of the single-crystal optical
activity proved difficult here.
The birefringence of the crystal is also an important charac-

teristic, and two of the indices have been determined using the
prism method10 exploiting the prismatic shape of the crystal.
The measurement has been carried out with the incident laser
beam propagating parallel to the crystallographicb-axis. The
correct orientation was ensured by adjusting the crystal in such
a way that the two different components of the beams penetrat-
ing the crystal result in symmetric refracted beams. The indices
of refraction were determined at three different wavelengths to
benc ) 1.661,na ) 1.584 at 532 nm,nc ) 1.615,na ) 1.581
at 632 nm, andnc ) 1.638,na ) 1.567 at 1064 nm (each with
a systematic error of(0.005). No absorption peaks were found
between 300 and 3000 nm. The refraction for light propagating
along c was measured with a wavelength of 1550 nm on a
single-crystal embedded in an epoxy resin and cut perpendicular
to c into layers of∼50 and 100µm (ab area about 0.13 mm2).
Because the crystal is birefringent, the velocityV of a light beam
entering the crystal plate collinear toc is split intoVa andVb,
corresponding to the two indices of refractionna andnb. Upon
exiting the crystal plate, a phase differenceδ ) 2πd(na - nb)/λ
depending on the thickness of the crystal (d) and the wavelength
(λ) is obtained. For three different thicknesses (to account for
a possible factor of 2π), the phase differences were measured
to give ∆n ) nb - na ) 0.105(5) (atλ ) 1550 nm). The
magnitude of birefringence is comparable with very strong
birefringent inorganic crystals, e.g. KNO3 (1.3346, 1.5056,
1.5064).10

Furthermore, second-order nonlinear optical effects were
investigated by optical second-harmonic generation (SHG).
These investigations have also been done to prove properties
connected with the determined symmetry group, in particular
the lack of an inversion center. Experiments have been carried
out with the fundamental (λ ) 1064 nm) as well as the
frequency-doubled (λ ) 532 nm) output of a picosecond Nd:
YAG laser. The SHG signal was detected by a photomultiplier
and a gated integrator after passing a monochromator and
appropriate filters.11 Single crystals oriented with theb-axis
parallel to the laser beam were used in these experiments.
For any polarization (i.e. in thea-c-plane for the chosen

crystal orientation) of the incident fundamental beam, a SHG
signal was found, which generally consists of two components
polarized in thea- and c-directions with different intensities.
In general, crystals of the symmetry groupPna21 may have
seven independentø(2)-tensor elements,12 which for SHG
experiments further reduce to 5 without and 3 if the Kleinmann
conjuncture holds. At least the nonvanishing tensor components
øccc, øaac, and øcaa contribute to the SHG signal. A first
quantitative determination of the nonlinear susceptibility has
been done only forøccc so far, which can be expected to be the
strongest component since the polar axis is along thec-direction.
The coherence factor13 describing the phase mismatch between
the fundamental and the frequency-doubled beam was calculated
as a spatial average across the beam diameter using the refractive
indicesnc(ω) andnc(2ω) as given above. It turned out that the
maximum coherence factor was always close to the optimum
value of 2 and obtained for symmetrical input (i.e. the beam
axis coincides with theb-axis), in agreement with experimental
observations. The SHG signal intensity averaged from three
different samples was 2 W/cm2 with an accuracy of about(20%
in these experiments. The second-order nonlinear optical
coefficient can be evaluated from these results within the
undepleted pump approximation tod33 ) 1/2øccc ) (6 ( 3) ×
10-15 m/V. The large uncertinity is mainly given by the
uncertinity of the dispersionnc(2ω) - nc(ω) using the above-
mentioned procedure. The determined nonlinear coefficient is
in the same order of magnitude as for e.g. with quartz but clearly
weaker compared with good SHG crystals like KTiOPO4 or
LiNbO3.13 Yet, 1 appears to be the first example of a poly-
(azolyl)borate complex where the borate ligand and its metal
connectivity are clearly the cause of the NLO effect.14
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